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Abstract

The present paper will present a description of and results from a new solution

algorithm for the compressible Navier-Stokes equations developed by a team of re-

searchers at Langley Research Center. The main features of the algorithm are second-

or third-order accurate upwind discretization of the convective and pressure deriva-

tives and a relaxation scheme for the unfactored implicit backward Euler time method,

implemented in a finite-volume formulation.

Upwind methods have been successfully used to obtain solutions to the Euler

equations for flows with strong shock waves. One reason for this success is that

these methods directly simulate the signal propagation features of hyperbolic

equations. Furthermore, these methods have the advantage of being naturally dis-

sipative. Upwind differencing has been used for the pressure and convective terms in

the present Navier-Stokes algorithm while central differencing has been used for the

viscous terms. The particular upwind method being used is based on the flux-vector-

splitting technique developed by Van Leer (ref. 1) and both second- and third-order

accurate discretizations have been developed.

Currently, the most widely used implicit solution techniques for the Navier-

Stokes equations use approximate factorization (AF) methods to treat multi-

dimensional problems. Although the implicit AF methods are unconditionally stable in

two dimensions, they require an optimal set of iteration parameters, which are diffi-

cult to obtain, for rapid convergence. Furthermore, the implicit AF schemes are only

conditionally stable for the three-dimensional Navier-Stokes equations. However, the

upwind discretization leads to a diagonally dominant matrix structure which allows

large time steps to be taken in multi-dimensional problems. The time integration

scheme being used in the present algorithm corresponds to a line Gauss-Seidel re-

laxation method. This method produces good convergence rates for steady-state flows,

and most of the algorithm has been vectorized on the NASA Langley VPS 32 computer.

The Navier-Stokes algorithm has been tested for several two-dimensional flow

problems such as the laminar boundary layer flow on a flat plate and the flow pro-

duced by an oblique shock wave impinging on a laminar boundary layer developing on a

flat plate. Solutions for both problems gave excellent results which are presented

in this paper. Present effort is directed toward the extension of the scheme to the

full three-dimensional Navier-Stokes equations.
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Upwind Relaxation Algorithms for the
Euler/Navier-Stokes Equations _

The purpose of this paper is to present upwind relaxation algorithms for accur-
ate and reliable steady-state solutions to either the compressible Euler (inviscid)
or Navier-Stokes (viscous) equations. The main feature of the algorithms is the use
of second- or third-order accurate upwind discretizations of the convective and pres-
sure terms, which enables implicit line relaxation strategies to be developed for
rapid solutions to the steady-state equations. The basic algorithm for three-
dimensional flows is discussed. Both inviscid and viscous (using thin-layer Navier-
Stokes approximations) computations are shownfor a series of two-dimensional flows.
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3-D Relaxation Algorithm

The relaxation algorithm for the time-dependent Euler equations written in con-
servation form and generalized coordinates is shown. The equation to be solved with
relaxation corresponds to the linearized, backward-time approximation in delta form.
The inviscid flux is split according to the eigenvalues of the characteristic equa-
tion, which recognizes the signal propagation features of the hyperbolic equations
and enables relaxation approaches to be exploited for solutions to the steady-state
equations. The particular flux splitting technique used corresponds to that devel-
oped by Van Leer (ref. I), although the advantages resulting from upwind differencing
would apply equally as well to other splitting techniques. Applying upwind differ-
encing in the streamwise (_) direction on the implicit (left-hand) side of the
equation in delta form leaves an equation to be solved in the cross flow (q-_)
plane. The streamwise relaxation is effected by sweeping in the _-direction
through the mesh, alternating the direction of the sweepevery other pass in order to
maintain stability for higher order differencing.

Non-linear updating of the residual is indicated, corresponding to upstream
cross-flow planes evaluated at time level n+1 whensweeping from upstream to down-
stream, and vice-versa. The upwind relaxation schemeindicated is unconditionally
stable and maximal damping occurs at large time steps. This is in contrast to
approximately factored approaches, which require an optimal set of iteration
parameters, which are difficult and time consuming to obtain, for rapid
convergence. The relaxation schemealso has the advantage that it recovers
conventional space marching techniques for supersonic flows in the _-direction.

Time-dependent Euler equations in generalized coordinates

+ + + - o

Linearized implicit time integration

I I 8F _G _H] Rn+ ÷ =-

Applying upwind relaxation in the streamwise (F.,)direction leaves
an equation to be solved in the cross-flow (n-<) plane

M +6 n c_--Q _- AQ =-RIQ n, Qn+l)

Where

I + _F + _)F- AQ = Qn+l
M- JAT _--'Q _)Q
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Solution of Cross-Flow Equations

The upwind differenced equation in the cross-flow plane can be solved using

either relaxation or approximate factorization. The upwind relaxation shown corre-

sponds to alternate line Gauss-Seidel sweeping with nonlinear updating of the re-

sidual indicated, although in practice the residual is updated linearly using the

Jacobian matrices from the implicit side of the equation. With first-order implicit

upwind differencing, either approach leads to two sweeps across the plane, solving a

system of tridiagonal equations on each line. With relaxation in the cross-flow

plane, the scheme is unconditionally stable for the linear wave equation and maximum

damping occurs with large time steps. However, because the algorithm is recursive in

nature, it cannot be completely vectorized on current pipeline supercomputers such as

the CDC CYBER 205. The time step is limited to obtain optimal convergence with the

approximate factorization in the cross-flow plane, but the scheme is completely

vectorizable. Thus, a tradeoff exists between convergence rate and computational

rate in determining the most efficient strategy. Vectorizable relaxation strategies,

such as checkerboard algorithms, lead to faster computational rates with slightly

lower convergence rates, owing to the underrelaxation required for stability.

+ 6< ] AQ =

]
NI + 8q _)--_ B--Q _R(On, Qn+l)

Upwind relaxation (Line Gauss-Seidel --alternate sweeping)

[M. -. ](_O (_O . (_O

[ - 1m + _)O c_O rl c_'-Q"

Approxi mate factorization

M+ 8q

Z_Q=-R(Q n, Qn+l) <-line implicit

AQ =-R(Qn Qn+l
I

) q -line implicit

= -R (Qn, Qn+ 1)
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Spatial Differencing

The convective and pressure terms are split according to the flux vector split-

ting technique developed by Van Leer, which is implemented in a control-volume form-

ulation. The flux difference is computed from the difference of split fluxes across

all boundaries, where the upwinding is incorporated through an interpolation of

conserved variables. A one-parameter family of interpolations is used. This family

ranges from fully upwind second-order to upwind-biased third-order approximations.

Viscous terms are differenced using second-order central differences, so that the

method for viscous flows is limited currently to second order.

Upwind flux splitting for convective and pressure terms

- 6_+ -6_F = 6 F + + F

Where upwind differences effected through interpolation of
conserved variables in terms of 1-parameter family

+ + - +

DFr.-F = F (O)i+--I -F (O-)i 1__
2 2

- 1[ ]Q i+ 1 = Qi+_ - (1-K)V +(I+K) A
2

-1 Second order fully upwind
K = +1 Second order central difference

1/3 Third order upwind - biased

Qi

Viscous terms differenced with second-order central differences
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Inviscid Shock Reflection From Flat Plate

Application of the relaxation algorithm to the solution of an inviscid shock

reflection from a flat surface is shown. The freestream Mach number is 2.9 and the

shock angle is 29 ° . Fully upwind spatial differencing in the streamwise direction is

used along with vertical Gauss-Seidel line relaxation; this leads to the quadratic

convergence shown since the flow is fully supersonic. First-order differencing leads

to block tridiagonal line inversions; second- or third-order differencing leads to

block pentadiagonal line inversions. The residual history shown is for a global line

relaxation strategy (sweeping downstream through the mesh). Further improvements in

efficiency can be realized by removing linearization errors completely on a line

before moving to the next line, and, thus, recovering a space marching method. The

space marching strategy has also been extended to efficiently treat supersonic flows

with embedded subsonic regions.
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Pressure Contours For Inviscid Shock Reflection

Pressure contours for the inviscid shock reflection are shown with various

orders of spatial differencing. The grid for each case is uniformly spaced in each

of the two directions. The higher order methods are much less dissipative then the

first-order scheme and show much higher resolution of the shock wave.

M_ = 2.9;8 = 29°, 61 x 21 grid
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96



Residual Histories for First- and Second-Order Schemes

Residual histories for the transonic flow over a bump in a channel are shown.

The incoming Mach number is 0.85, and a significant region of transonic flow exists

as shown subsequently. The particular results shown were obtained with approximate

factorization (AF) and with vertical line relaxation (LR) methods on a 34 x 18 H-mesh

with uniform spacing. The Courant number for the LR scheme is on the order of 200,

while that of the AF scheme is limited to 20. One iteration refers to two passes

through the mesh using AF and one pass through the mesh using LR. The computational

work per iteration on a scalar processor is roughly equal for the two methods and

thus the LR scheme is much more efficient. On a vector processor, the computational

rate per iteration for the LR scheme is two to three times slower than the AF scheme,

even though more than 90 percent of the LR scheme has been vectorized. The only

scalar operations in the LR scheme are the recursive forward-backward substitutions

on a line; the lower-upper decomposition of the matrix equations is completely

vectorizable. Thus, the relative efficiency of the two schemes depends on the type

of computer on whic_ the two approaches are implemented.
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Computational Grid for Bump in Channel

A computational grid for the transonic flow over a bump in a channel is shown.

The thickness of the bump is 4.2 percent of the chord, and the channel is approxi-

mately two chords in height. The computational grid extends two chords ahead of and

behind the bump and is clustered in the region near the bump. The grid is uniform in

the vertical direction.

h/c= 2.073; t/c =4.2 %; 85 x41 H-mesh
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Pressure Contours for Bump in Channel

Pressure contours for the transonic flow over a bump in a channel obtained on

the 85 × 41 computational grid are shown. A substantial region of transonic flow

exists over the bump, and the shock is captured with two transition zones using the

present method. The results shown were obtained with the fully upwind second-order

scheme (K = -I).

Moo= 0.85-, t/c = 4.2%; h/c = 2.073-, 85 x 41H-mesh

h/c

1.00 .98 .94 .94.96 /
i

' _ / J ;
\ _/_ _ ;
' : \ t I' : / ! i

\ / i
i

'. / f_,hl / /

" j,!/\ ! ,:

\ \ i//ili'/_llli
..---_ \ \ i i /II ii/:"?;ll,i/

,I l,rJ ,,t/I ; :,_i j_//////s_,",, \
1 ! Ilfrlil, EliLimzul_J_3lE_iii

-2 0 1
I

3

x/c

99



One-Dimensional Couette Flow

Applications of the relaxation algorithm to a series of viscous model problems

are shown. The first is one-dimensional Couette flow between a fixed lower plate and

a moving upper plate at low Reynolds number and Mach number. Velocity profiles ob-

tained with third-order upwind-biased differencing for the convective and pressure

terms and second-order central differencing for the viscous shear terms are shown

where the parameter B represents an applied pressure gradient term. No-slip velocity

and fixed-wall temperature boundary conditions were used. The relaxation method at

large time steps in one-dimension corresponds to Newton's method for finding

solutions to nonlinear systems of equations and convergence of the residual to

machine zero can be obtained in less than ten iterations. The computed velocity

profiles agree very closely with the exact result.

ReH = 6.2;M 0 = O.09
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Flat-Plate Boundary Layer: Second-Order Differencing

The accurate computation of viscous effects with an upwind method is an import-

ant concern. Results are shown for the laminar flow over a flat plate using second-

order (_ = -I) differencing for the pressure and convective terms. The freestream

Mach number is 0.5 and the Reynolds number based on the length of the plate is

10,000. The results were obtained on a 30 × 40 computational grid, which is uniform

in the streamwise direction and stretched in the direction normal to the plate. The

computational domain is sketched; inflow conditions were applied upstream of the

plate and outflow conditions above and downstream of the plate. No-slip, adiabatic

wall conditions were specified on the plate. The computations recover the similarity

velocity profiles, which develop very quickly downstream of the leading edge. The

second-order scheme resolves the boundary layer adequately with approximately twenty

points in the layer.
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Flat-Plate Boundary Layer: Third-Order Differencing

Results are shown using third-order upwind-biased differencing (< = I/3) for the

convective and pressure terms. The accuracy relative to the second-order differenc-

ing is evident by comparison with the previous figure. The third-order differencing

can be implemented with only a very small additional computational effort relative to

the second-order scheme, since the computational molecule for both schemes only in-

volves five points in any one direction. Central difference methods and the present

upwind method are formally of the same order (second order) for viscous flows and one

should expect roughly the same truncation error level. This has been verified in the

present effort both analytically and numerically. In contrast, first-order upwind

differencing leads to a boundary layer thickness four to five times that shown.
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Shock-Boundary Layer Interaction

The final problem is that of an oblique shock wave impinging on a laminar bound-

ary layer developing on a flat plate. The conditions correspond to the experiments

of Hakkinen et al. (ref. 2) at a free-stream Mach number of 2.00 and a Reynolds

number based on the length from the leading edge to the shock impingement point of

2.96 × 105. The shock is of sufficient strength to cause a separation of the de-

veloping laminar boundary layer, as evident in the computational results shown using

thin-layer approximations to the Navier-Stokes equations. The pressure contours show

the compression and expansion waves downstream of the shock impingement, which are

caused by the interaction of the incoming shock wave with the separated boundary

layer.

ReL = 2.96 x 105; N1oo=2. O0
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Shock-BoundaryLayer Interaction: Grid Convergence

In order to assess the accuracy of the present upwind method, results from a
grid convergence study are shown. Meshdensities two and three times the original
grid were used. Details of the separated flow region are generally resolved with the
second mesh, although a small difference exists between the second and third meshes
near reattachment. Outside the separated flow region, very little difference in wall
pressure exists in the results shown. The details in the present calculations
clearly show the pressure plateau in the separation region.
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Shock-BoundaryLayer Interaction: Skin Friction Coefficient

The skin friction coefficient predicted with the present method for the three

meshes is shown. The skin friction exhibits three local extremum, two minimums and

one maximum, in the separation zone. The separation extends from approximately 0.75

to 1.20 reference lengths from the leading edge of the plate.
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Shock-Boundary Layer Interaction: Wall Pressure and Skin Friction

A comparison of wall pressure and skin friction from the present results with

experiment is shown. The pressure plateau and the extent of separation are closely

predicted. The arrows in the figure indicate that only the presence of separation

was deduced from the experiment; the actual level of skin friction in the separation

was not measured.
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Concluding Remarks

Efficient solutions to steady-state Euler and Navier-Stokes equations are pos-
sible through the upwind relaxation algorithms discussed previously. The methods
recover conventional space marching methods for fully supersonic flows and can
be shownto be unconditionally stable in three dimensions. Accurate solutions to
several inviscid and viscous model problems, including flat-plate boundary layer flow
and shock/boundary layer interaction with separation, have been demonstrated. The
method is currently being implemented in three dimensions.

Efficient solutions to steady-state equations possible
through upwind relaxation

Recovers space marching method for supersonic flows
Unconditionally stable in three dimensions

Accurate solutions to several viscous flows demonstrated

using second/third-order upwind differencing for
convective and pressure terms

Flat plate boundary layer
Shock/boundary-layer interaction with separation
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